SURVEILLANCE OF BARRETT'S ESOPHAGUS GUIDELINE TABLES

Table 1. Summary of Recommendations and Implementation Considerations

Recommendations	Strength of Recommendation	Certainty of Evidence									
1. In patients with non-dysplastic Barrett's esophagus, the AGA	Conditional	Low									
suggests performing endoscopic surveillance compared to											
no surveillance.											
a Endoscopic surveillance is suggested every 3 years in pa	tients diagnosed with n	n-dvsnlastic									
Barrett's esophagus if a high-guality endoscopic examina	tion was performed. Su	veillance									
intervals may be extended to every 5 years in patients at	lower risk of progression	n. for instance									
those with short-segment Barrett's esophagus.											
b. Discontinuation of surveillance endoscopy in patients with	non-dysplastic Barrett'	s esophagus									
should be considered based on age and comorbidities.											
	1	1									
2. In patients undergoing screening or surveillance endoscopy	Strong	Moderate									
for Barrett's esophagus, the AGA recommends using a											
combination of high-definition white light endoscopy plus											
chromoendoscopy compared white light endoscopy alone.											
Implementation Considerations for Recommendation #2:		define the									
a. Among the chromoendoscopy modalities that meet optim	al performance characte	eristics, the									
choice of chromoendoscopy modality (virtual or dye-base	a chromoendoscopy) sr	iouid be based									
on endoscopist and center expense.	n adjunct to compling u	aina a atruaturad									
biopsy protocol rather than a substitutive technique to a s	tructured biopsy protoco	Sing a Structured									
		л.									
Implementation Considerations Related to Surveillance Endo	scopic Examination:										
a. Endoscopic evaluation in patients with suspected or confi	rmed Barrett's esophag	us should meet									
the requirements of a high-quality endoscopic examinatio	n.										
b. All patients with suspected or established Barrett's esoph	agus undergoing screer	ning or									
surveillance endoscopy should be sampled using a struct	ured biopsy protocol that	at includes									
targeted biopsies from any visible lesions and random 4-	uadrant biopsies every	2 cm if no prior									
history of dysplasia and every 1 cm if there is a history of	dysplasia.										
3. In patients undergoing screening or surveillance endoscopy	ΝΔ	ΝΔ									
for Barrett's econhagus, the AGA makes no recommendation											
for or against the use of wide-area transcribbelial sampling as											
an adjunctive sampling technique to a structured bionsy											
protocol (knowledge gap)											
Implementation Considerations for Recommendation #3:											
a. Wide-area transepithelial sampling should not be used as	a substitutive sampling	technique to a									
structured biopsy protocol.	1 0	·									
b. Findings of neoplasia on wide-area transepithelial sampli	ng but a structured biop	sy protocol									
without neoplasia (discordant results) should undergo rep	eat surveillance endosc	opy by an									
expert endoscopist within 3-6 months on high-dose acid s	uppressive regimen wit	h repeat									
sampling using a structured biopsy protocol and endosco	pic resection of any visil	ole lesions.									
c. If embarking on endoscopic eradication therapy in patient	s with high-grade dyspla	asia or									
esophageal adenocarcinoma solely based on wide-area t	ransepithelial sampling,	discuss risks									
and benefits of endoscopic eradication therapy, need for	adherence with reflux m	anagement,									
expected outcomes, need for continued surveillance after	completion of endosco	pic eradication									
therapy, with adequate time to assess patient values and	preterences.										
a. In patients with Barrett's esophagus and crypt dysplasia,	indefinite for dysplasia d	or low-grade									
uyspiasia solely based on wide-area transepithelial samp	ing, endoscopic eradica	auon therapy									
snoula not be performed.											

Recommendations	Strength of Certainty Recommendation Evidence				
4. In patients diagnosed with non-dysplastic Barrett's	NA	NA			
esophagus. Barrett's esophagus with indefinite for dysplasia					
or Barrett's esophagus with low-grade dysplasia, the AGA					
makes no recommendation for or against the routine use of					
p53 assessment as an adjunct test to histopathology					
(knowledge gap)					
5. In patients diagnosed with non-dysplastic Barrett's	NA	NA			
esophagus, Barrett's esophagus with indefinite for dysplasia					
or Barrett's esophagus with low-grade dysplasia, the AGA					
makes no recommendation for or against the routine use of					
TissueCypher testing as an adjunct test to histopathology					
(knowledge gap).					
6. In adult patients with Barrett's esophagus, the AGA suggests	Conditional	Low			
the use of daily proton pump inhibitor therapy compared to no					
proton pump inhibitor therapy for the prevention of neoplastic					
progression of BE					
Implementation Considerations for Recommendation #6:					
In patients with Barrett's esophagus, counsel tobacco cessation and	nd weight loss if overwe	eight.			
7. In adult patients with Barrett's esophagus, the AGA suggests	Conditional	Low			
use of proton pump inhibitors over surgery for the prevention					
of neoplastic progression to high-grade dysplasia or					
esophageal adenocarcinoma.					
8. In adult patients with columnar lined esophagus <1 cm with	Conditional	very Low			
intestinal metaplasia, the AGA suggests against surveillance					
Implementation Considerations for Management of Barrott's F	sonhagus Patients w	ith Indofinito			
for Dysplasia and Low-grade Dysplasia:	-sopnagus ratients w				
a Refer patients with Barrett's esophagus-related neoplasia	including patients diag	nosed with low-			
grade dysplasia and indefinite for dysplasia to high volume	e endoscopists with exp	ertise in			
endoscopic eradication therapy, pathologists with expertis	e in BE neoplasia and a	access to multi-			
disciplinary care.					
b. Histologic diagnosis of Barrett's esophagus related dyspla	sia or early cancer sho	uld be confirmed			
by an expert pathologist.	,				
c. The diagnosis of Barrett's esophagus and indefinite for dy	splasia and low-grade o	lysplasia should			
be confirmed by a repeat endoscopy by an expert endosc	opist within 6 months or	high dose acid			
suppressive therapy primarily to rule out prevalent high-gr	ade dysplasia or esoph	ageal			
adenocarcinoma.					
d. Patients with confirmed Barrett's esophagus and low-grad	e dysplasia choosing si	urveillance			
should continue high dose acid suppressive therapy and u	indergo an upper endos	scopy at 6-			
month intervals for 1 year, then annually, by expert endos	copists, until there is a o	change in			
histologic grade of dysplasia.					
e. Endoscopic eradication therapy in patients with Barrett's e	sophagus and indefinite	e for dysplasia,			
confirmed by expert pathology review, is not recommende	d.				
f. Patients with Barrett's esophagus and indefinite for dyspla	sia should undergo rep	eat endoscopy			
in 1 year and then annually, by expert endoscopists, until t	inere is a change in his	tologic grade of			
uyspiasia.					
Implementation Considerations Related to Quality Indicators	n Barrett's Esonhagu	s Surveillance:			
a. To monitor care performance, endoscopists and practices	are encouraged to utilize	ze published			
quality indicators in screening and surveillance of patients	with Barrett's esophage	us.			
b. The most widely utilized quality indicators in surveillance in	nclude adhering to appr	opriate			
endoscopic surveillance intervals among patients with nor	-dysplastic Barrett's es	ophagus and			
appropriate sampling technique using the Seattle biopsy p	rotocol in patients with	suspected or			
confirmed Barrett's esophagus.					
c. Endoscopists and practices should consider monitoring po	st-endoscopy esophag	eal			
adenocarcinoma (PEEC) and post-endoscopy esophagea	l neoplasia (PEEN) cas	es to			
understand contributing factors and areas of improvement	•				

Table 2. Interpretation of the Certainty of Effects Using the GRADE Framework

Certainty of Evidence	Definition
High	We are very confident that the true effect lies close to that of the estimate of the effect.
Moderate	We are moderately confident that the true effect lies close to that of the estimate of the effect. There is a possibility that it is substantially different.
Low	Our confidence that the true effect lies close to that of the estimate of the effect is low. The true effect may be substantially different from the estimate of the effect.
Very low	Our confidence that the true effect lies close to that of the estimate of the effect is very low. The true effect is likely substantially different from the estimate of the effect.

Table 3. Interpretation of a Strong and Conditional Recommendation

Implications	Strong Recommendation	Conditional Recommendation
For Patients	Most individuals in this situation	The majority of individuals in this situation would
	would want the recommended	want the suggested course of action, but many
	course of action and only a	would not.
	small proportion would not.	
For Clinicians	Most individuals should receive	Different choices will be appropriate for
	the intervention. Formal	individual patients consistent with his or her
	decision aids are not likely to	values and preferences. Use shared decision
	be needed to help individuals	making. Decision aids may be useful in helping
	make decisions consistent with	patients make decisions consistent with their
	their values and preferences.	individual risks, values, and preferences.
For Policy Makers	The recommendation can be	Policy making will require substantial debate
	adapted as policy or	and involvement of various stakeholders.
	performance measure in most	Performance measures should assess whether
	situations.	decision making is appropriate.

Table 4. PICO Questions

Focused Question	Patients	Intervention	Comparator	Outcomes
1.Should patients with BE without dysplasia undergo endoscopic surveillance?	Adult patients with non- dysplastic BE	Endoscopic surveillance	No surveillance	 Benefits: 1. Reduction in EAC-related mortality (critical) 2. Reduction in all-cause mortality (critical) 3. Earlier stage of EAC detection (critical)
				Harms: 1. Bleeding 2. Perforation 3. Serious adverse events
2.What is the optimal imaging strategy for BE patients undergoing endoscopic surveillance	Adult patients with BE undergoing screening or surveillance	Chromoendoscopy (standard or virtual) plus high- definition white light endoscopy	White light endoscopy	 Benefits: 1. Increased yield of neoplasia (dysplasia and EAC) detection (critical) 2. Reduction in rates of PEEC and PEEN 3. Improved diagnostic characteristics for neoplasia detection (sensitivity and specificity) 4. Reduction in the number of biopsies required 5. Time to complete endoscopy
				 Harms: 1. Bleeding 2. Perforation 3. Adverse events related to dye-based chromoendoscopy 4. Serious adverse events
3.What is the role of adjunctive sampling techniques in patients undergoing surveillance endoscopy?	Adult patients with BE undergoing screening or surveillance	Structured biopsy protocol plus WATS-3D sampling	Structured biopsy protocol	 Benefits: 1. Increased yield of neoplasia (dysplasia and EAC excluding crypt or indefinite for dysplasia) detection (critical) 2. Reduction in rates of PEEC and PEEN 3. Prediction of development of dysplasia or progression Harms: Bleeding Perforation Serious adverse events
4.In patients with BE undergoing surveillance endoscopy, is the use of biomarkers superior to grade of dysplasia in prediction of progression?	Adult patients with BE undergoing surveillance endoscopy (stratified by NDBE, IND/LGD)	 a. Combination of p53 staining with histology b. Combination of TissueCypher with or without histology 	Standard histopathology	 Benefits: Diagnostic characteristics (sensitivity, specificity, true positive, true negative, false positive and false negative) (critical outcome) Improved prediction of progression to HGD/EAC (critical outcome) Proportion of cases with change in management (EET, change in frequency of surveillance endoscopy)

Focused Question	Patients	Intervention	Comparator	Outcomes
5.What is the role of chemopreventive strategies in prevention of progression in patients with BE?	Adult patients with BE	a.Once daily PPI b.PPI plus aspirin c.BID PPI therapy	No PPI therapy Daily PPI therapy	Benefits: 1. Reduction in progression to EAC (critical) 2. Reduction in progression to HGD/EAC (critical) 3. Reduction in EAC mortality Harms: 1. Adverse events related to PPI therapy 2. Adverse events related to aspirin therapy
6.What is the role of anti-reflux procedures in the prevention of progression in patients with BE?	Adult patients with BE	Anti-reflux procedures	PPI therapy	Benefits: 1.Reduction in progression to EAC (critical) 2.Reduction in progression to HGD/EAC (critical) 3.Reduction in EAC mortality Harms: 1. Adverse events related to PPI therapy 2. Adverse events related to anti-reflux surgery
7.Should patients with columnar lined esophagus <1 cm with intestinal metaplasia undergo endoscopic surveillance	Adult patients with columnar lined esophagus <1cm	Endoscopic surveillance	No surveillance	Benefits: 1.Progression to EAC (critical) 2.Progression to HGD/EAC (critical) 3.Reduction in EAC mortality Harms: 1.Bleeding 2.Perforation 3.Serious adverse events

BE: Barrett's esophagus, EAC: esophageal adenocarcinoma, HGD: high-grade dysplasia, LGD: low-grade dysplasia, ND: non-dysplastic, IND: indefinite for dysplasia, PEEC: post-endoscopy esophageal adenocarcinoma, PEEN: post-endoscopy esophageal neoplasia, WATS-3D: wide-area transepithelial sampling, EET: endoscopic eradication therapy, PPI: proton pump inhibitors

Table 5. Grading of Recommendations Assessment, Development and Evaluation Evidence Profile for PICO Question 1: Role of endoscopic surveillance in patients with non-dysplastic Barrett's esophagus

l			Certainty a	ssessment			№ of patients		Effe	ct		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	surveillance	no surveillance	Relative (95% CI)	Absolute (95% Cl)	Certainty	Importance
Overall surviv	val											
1	randomised trials	not serious	not serious	not serious	very serious ^a	none	333/1733 (19.2%)	356/1719 (20.7%)	HR 0.95 (0.82 to 1.10)	9 fewer per 1,000 (from 34 fewer to 18 more)	⊕⊕⊖ Low ^a	CRITICAL
EAC Diagnos	is											
1	randomised trials	not serious	not serious	not serious	very serious ^b	none	40/1733 (2.3%)	31/1719 (1.8%)	RR 1.28 (0.80 to 2.04)	5 more per 1,000 (from 4 fewer to 19 more)		IMPORTANT
Early stage E	AC and HGD dete	ction rates										
1	randomised trials	not serious	not serious	serious	serious⁵	none	58/1733 (3.3%)	20/1719 (1.2%)	RR 2.82 (1.73 to 4.56)	21 more per 1,000 (from 8 more to 41 more)	$\bigoplus_{Low^{b,c}} \bigcirc$	CRITICAL
Reduction in	EAC-related Mort	ality from NRS										
4	non- randomised studies	serious ^d	not serious	not serious	not serious	none	335/677 (49.5%)	3834/13465 (28.5%)	RR 0.73 (0.57 to 0.94)	77 fewer per 1,000 (from 122 fewer to 17 fewer)		CRITICAL
EAC - related	mortality (NRS-c	ohort studies with v	vell-defined surveilla	ince)								
4	non- randomised studies	seriouse	not serious	not serious	not serious	none	101/282 (35.8%)	144/249 (57.8%)	RR 0.60 (0.50 to 0.71)	231 fewer per 1,000 (from 289 fewer to 168 fewer)	⊕⊖⊖⊖ Very low ^e	CRITICAL
Complication	s from diagnostic	: EGD, data from lar	ge cohort study with	n 387,647 patients								
1	non- randomised studies	not serious	not serious	not serious	not serious	none	Retrospective, observational cohort study with total of 387,647 patients that underwent EGD. - Bleeding rate was 7.9/10,000 persons - Perforations 0.4/10,000 persons - CVA, AMI, and CHF 2.8/10,000, 4.4/10,000, and 1.5/10,000 persons, respectively					CRITICAL

CI: confidence interval; HR: hazard ratio; RR: risk ratio

Explanations

a. Confidence interval crosses the MID threshold of 1-1.4%: from clinically significant mortality reduction to clinically significant increase in mortality

b. Very small event number and confidence interval crossing from clinically no important cancer diagnosis to clinically important cancer diagnosis

c. Surrogate outcome, for patient important outcome such as decrease in EAC mortality

d. Lead and length time biases: 3 studies in this group had data adjusting for lead time bias and no studies adjusted for length time bias. Sensitivity analysis after accounting for lead-time bias resulted in a substantial attenuation in mortality benefit, (HR = 0.85; 95% CI = 0.75–0.95)

e. Lead and length time biases: adjusting for lead-time with additional adjustment for stage and treatment of cancer eliminated the association between endoscopic surveillance and EAC-related mortality (HR = 1.27; 95% CI = 0.78–2.07)

Table 6. Grading of Recommendations Assessment, Development and Evaluation Evidence Profile for PICO Question 2: Role of chromoendoscopy (overall, dye-based chromoendoscopy, virtual chromoendoscopy) in BE patients undergoing surveillance endoscopy – neoplasia detection rates between chromoendoscopy plus white-light endoscopy versus white-light endoscopy alone

			Certainty a	issessment			№ of patients		Effect			
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Chromoendoscopy (standard or virtual) plus high-definition white light endoscopy	White light endoscopy	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Dysplasia o	Dysplasia detection											
10	randomized trials	not serious	not serious	serious ^a	not serious ^ь	none	368/817 (45.0%)	311/817 (38.1%)	RR 1.16 (1.07 to 1.27)	61 more per 1,000 (from 27 more to 103 more)	Moderate ^{ab}	IMPORTANT
HGD/cance	r detection											
11	randomized trials	not serious	not serious	seriousª	not serious ^c	none	166/795 (20.9%)	133/795 (16.7%)	RR 1.20 (1.03 to 1.40)	33 more per 1,000 (from 5 more to 67 more)	Moderate ^{a.c}	CRITICAL
Dysplasia o	letection with dye	-based chromoendo	оѕсору									
6	randomized trials	not serious	not serious	not serious ^a	serious ^b	none	155/443 (35.0%)	123/443 (27.8%)	RR 1.19 (1.02 to 1.39)	53 more per 1,000 (from 6 more to 108 more)	Moderate ^{a,b}	IMPORTANT
HGD/cance	r detection with d	ye-based chromoer	idoscopy			•		•		•	•	•
5	randomized trials	not serious	not serious	not seriousª	Serious	none	28/323 (8.7%)	21/323 (6.5%)	RR 1.18 (0.96 to 1.46)	12 more per 1,000 (from 3 fewer to 30 more)	Moderate ^{ad}	CRITICAL
Dysplasia o	letection with virte	ual chromoendosco	ру	•	•	•	•			•		
4	randomised trials	not serious	not serious	not serious ^a	Serious ^b	none	213/374 (57.0%)	188/374 (50.3%)	RR 1.16 (0.99 to 1.37)	80 more per 1,000 (from 5 fewer to 186 more)	Moderate ^{a,d}	IMPORTANT
HGD/EAC o	letection with virtu	ual chromoendosco	ру	•	•	•	•			•		
6	randomized trials	not serious	not serious	not serious ^a	Serious	none	138/472 (29.2%)	112/472 (23.7%)	RR 1.22 (0.97 to 1.52)	52 more per 1,000 (from 7 fewer to 123 more)	Moderate ^{ad}	CRITICAL

CI: confidence interval; RR: risk ratio

Explanations

a. Although considered indirectness of the outcome due to no longitudinal follow up to determine long term impact of chromo endoscopy, however detection of dysplasia and EAC increased by using chromoendoscopy on both targeted and random samples, and the effect should not change with time, so we decided not to rate down for indirectness

- b. The CI cross the presumed MID of 5%
- c. The CI cross the presumed 1% -1.4% of MID

Table 7. Grading of Recommendations Assessment, Development and Evaluation Evidence Profile for PICO Question 3: Role of adjunctive sampling techniques (WATS-3D) in BE patients undergoing screening or surveillance – neoplasia detection rates between WATS-3D plus structured biopsy protocol versus structured biopsy protocol alone

			Certainty assessment					№ of patients		Effect		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	WATS-3D + FB	FB	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance
HGD/EAC de	IGD/EAC detection (diagnostic yield- Additional cases detected by using WATS-3D as a add on test)											
8	non- randomised studies	seriousª	not serious	not serious	not serious	none	138/22548 (0.6%)	82/22548 (0.4%)	RR 1.61 (1.25 to 2.08)	2 more per 1,000 (from 1 more to 4 more)		CRITICAL
LGD/HGD/EA	C detection (diag	gnostic yield- Additi	onal cases detected	by using WATS-3D	as a add on test)							
6	non- randomised studies	seriousª	not serious	not serious	not serious	none	214/19901 (1.1%)	177/19901 (0.9%)	RR 1.18 (0.96 to 1.45)	2 more per 1,000 (from 0 fewer to 4 more)		CRITICAL
Harms												
1	randomised trials	not serious	not serious	not serious	extremely serious ^b	none	- In the RCT there w adjunctive diagnosti from FP testing are a	vas only 1 SAE in the Was only 1 SAE in the Was c yield without referent s available. Less concern	ATS-3D group – perforat tandard test were used. for FN given the adjunct		CRITICAL	

CI: confidence interval; RR: risk ratio

Explanations

a. Limited follow-up to assess outcomes related to increased dysplasia detection on WATS and lack of confirmation

b. In the RCT there was just 1 event and very wade CI

Table 8. Grading of Recommendations Assessment, Development and Evaluation Evidence Profile for PICO Question 4: Role of biomarkers (p53 staining) in predicting progression in patients with Barrett's esophagus undergoing surveillance endoscopy

a. Test accuracy in non-dysplastic Barrett's esophagus

Sensitivity 0.48 (95% CI: 0.39 to 0.57)			 	
		Broyaloncos	0.6%	
Creatificity	0.95 (0.5%) (0.1, 0.77, to 0.00)	Flevalences	0.076	
Specificity	0.65 (95% CI. 0.77 10 0.90)			

Outcome	№ of studies (№ of	Study design		Factors that ma	ay decrease cer	Effect per 1,000 patients tested	Test accuracy			
	patients)		Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 0.6%	CoE	
True positives (patients with progression to EAC/HGD)	9 studies 686 patients	cohort & case-control type studies	very seriousª	not serious	serious ^b	not serious	none	3 (2 to 3)	⊕⊖⊖⊖ Very low ^{a,b}	
False negatives (patients incorrectly classified as not having progression to EAC/HGD)								3 (3 to 4)		
True negatives (patients without progression to EAC/HGD)	9 studies 2170 patients	cohort & case-control type studies	very serious ^a	not serious	serious ^b	serious	none	845 (765 to 895)	⊕⊖⊖⊖ Very low ^{a,b,c}	
False positives (patients incorrectly classified as having progression to EAC/HGD)								149 (99 to 229)		

Explanations

a. Quadas 2 tool was used for assessing risk of bias and there were issues in multiple domains: (1) Patient selection: case-control sudy design was used in more than a half of the studies, not all the studies stratify for base-line pathology; (2) Index test: there were concerns regarding applicability if the index test since there were significant variability in interpretation of the test results; (3) Reference test was standard biopsy and progression to EAC, but the follow up period and therefore interpretation varies in between the studies.

b. Serious inconsistency. I² of 75% and 95% for sensitivity and specificity respectively

c. The false positive range crosses the clinical threshold of 20% (200/1000)

b. Test accuracy in Barrett's esophagus with indefinite for dysplasia

Sensitivity	0.71 (95% CI: 0.47 to 0.87)	Development	4.00/		1
Specificity	0.79 (95% CI: 0.59 to 0.90)	Prevalences	1.3%	 	

Outcome	Nº of studies (№ of	Study design		Factors that m	ay decrease cer	Effect per 1,000 patients tested	Test accuracy			
Outcome	patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 1.3%	CoE	
True positives (patients with progression to EAC/HGD)	7 studies 271 patients	cohort & case-control type studies	very serious ^a	not serious	serious ^b	not serious	none	9 (6 to 11)	⊕⊖⊖⊖ Very low ^{a,b}	
False negatives (patients incorrectly classified as not having progression to EAC/HGD)								4 (2 to 7)		
True negatives (patients without progression to EAC/HGD)	7 studies 706 patients	cohort & case-control type studies	very serious ^a	not serious	serious ^b	serious℃	none	780 (582 to 888)	⊕⊖⊖⊖ Very low ^{a,b,c}	
False positives (patients incorrectly classified as having progression to EAC/HGD)								207 (99 to 405)		

Explanations

a. Quadas 2 tool was used for assessing risk of bias and there were issues in multiple domains: (1) Patient selection: case-control sudy design was used in more than a half of the studies, not all the studies stratify for base-line pathology; (2) Index test: there were concerns regarding applicability if the index test since there were significant variability in interpretation of the test results; (3) Reference test was standard biopsy and progression to EAC, but the follow up period and therefore interpretation varies in between the studies.

b. Serious inconsistency. I² of 53% and 77% for sensitivity and specificity respectively

c. The false positive range crosses the clinical threshold of 20% (200/1000)

c. Test accuracy in Barrett's esophagus with low-grade dysplasia

Sensitivity	0.85 (95% CI: 0.68 to 0.94)			 	
Censitivity		Provalanca	1 720/		
Specificity	0.68 (0.59) (0.1 + 0.62 + 0.072)	Flevalence	1.7570		
Specificity	0.08 (95% C1. 0.02 10 0.72)				

Outcomo	Nº of studies (№ of	of Study design		Factors that m	ay decrease cer	Effect per 1,000 patients tested	Test accuracy		
Outcome	patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 1.73%	CoE
True positives (patients with progression to EAC/HGD)	7 studies 271 patients	cohort & case-control type studies	very seriousª	not serious	serious ^b	not serious	none	15 (12 to 16)	⊕⊖⊖⊖ Very low ^{a,b}
False negatives (patients incorrectly classified as not having progression to EAC/HGD)								2 (1 to 5)	
True negatives (patients without progression to EAC/HGD)	7 studies 706 patients	cohort & case-control type studies	very serious ^a	not serious	serious ^b	not serious	none	668 (609 to 708)	⊕⊖⊖⊖ Very low ^{a,b}
False positives (patients incorrectly classified as having progression to EAC/HGD)								315 (275 to 374)	

Explanations

a. Quadas 2 tool was used for assessing risk of bias and there were issues in multiple domains: (1) Patient selection: case-control sudy design was used in more than a half of the studies, not all the studies stratify for base-line pathology; (2) Index test: there were concerns regarding applicability if the index test since there were significant variability in interpretation of the test results; (3) Reference test was standard biopsy and progression to EAC, but the follow up period and therefore interpretation varies in between the studies. b. Serious inconsistency. I² of 74% and 19% for sensitivity and specificity respectively

Table 9. Grading of Recommendations Assessment, Development and Evaluation Evidence Profile for PICO Question 5: Role of biomarkers (TissueCypher) in predicting progression in patients with Barrett's esophagus undergoing surveillance endoscopy

a. Test accuracy in non-dysplastic Barrett's esophagus

Sensitivity	0.52 (95% CI: 0.43 to 0.61)			
Ochistavity		Prevalence	0.6%	
Specificity	0.95 (059) (01: 0.79 to 0.02)	Flevalence	0.076	
Specificity	0.65 (95% CI. 0.78 to 0.92)			

Outcomo	№ of studies (№ of	Study docian		Factors that ma	ay decrease cer	Effect per 1,000 patients tested	Test accuracy		
Outcome	patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 0.6%	CoE
True positives (patients with progression to EAC/HGD)	5 studies 112 patients	cohort & case-control type studies	very seriousª	not serious	not serious	not serious	none	3 (3 to 4)	⊕⊕⊖⊖ Lowª
False negatives (patients incorrectly classified as not having progression to EAC/HGD)								3 (2 to 3)	
True negatives (patients without progression to EAC/HGD)	5 studies 360 patients	cohort & case-control type studies	very serious ^a	not serious	not serious	serious ^b	none	845 (775 to 914)	⊕⊖⊖⊖ Very low ^{a,b}
False positives (patients incorrectly classified as having progression to EAC/HGD)								149 (80 to 219)	

Explanations

a. Quadas 2 tool was used for assessing risk of bias and there were issues in multiple domains: (1) Patient selection: case-control sudy design was used in more than a half of the studies, not all the studies stratify for base-line pathology; (2) Index test: there were concerns regarding applicability if the index test since there were significant variability in interpretation of the test results; (3) Reference test was standard biopsy and progression to EAC, but the follow up period and therefore interpretation varies in between the studies. b. The false positive range crosses the clinical threshold of 20% (200/1000)

b. Test accuracy in Barrett's esophagus and indefinite for dysplasia/low-grade dysplasia

Sensitivity	0.66 (95% CI: 0.58 to 0.74)				
Specificity	0.76 (95% CI: 0.69 to 0.83)	Prevalences	1.73%	1.3%	

				Factors that m	ay decrease cer	tainty of evide	ence	Effect per 1,000) patients tested	
Outcome	№ of studies (№ of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 1.73%	pre-test probability of 1.3%	Test accuracy CoE
True positives (patients with progression to EAC/HGD)	5 studies 40 patients	cohort & case- control type studies	very serious ^a	not serious	not serious	not serious	none	11 (10 to 13)	9 (8 to 10)	⊕⊕⊖⊖ Lowª
False negatives (patients incorrectly classified as not having progression to EAC/HGD)								6 (4 to 7)	4 (3 to 5)	
True negatives (patients without progression to EAC/HGD)	5 studies 40 patients	cohort & case- control type studies	very serious ^a	not serious	not serious	serious ^b	none	747 (678 to 816)	750 (681 to 819)	⊕⊖⊖⊖ Very low ^{a,b}
False positives (patients incorrectly classified as having progression to EAC/HGD)								236 (167 to 305)	237 (168 to 306)	

Explanations

a. Quadas 2 tool was used for assessing risk of bias and there were issues in multiple domains: (1) Patient selection: case-control sudy design was used in more than a half of the studies, not all the studies stratify for base-line pathology; (2) Index test: there were concerns regarding applicability if the index test since there were significant variability in interpretation of the test results; (3) Reference test was standard biopsy and progression to EAC, but the follow up period and therefore interpretation varies in between the studies.

b. The false positive range crosses the clinical threshold of 20% (200/1000)

Table 10. Grading of Recommendations Assessment, Development and Evaluation Evidence Profile for PICO Question 6: Role of chemopreventive strategies – proton pump inhibitor therapy to prevent neoplastic progression in patients with Barrett's esophagus

			Certainty a	ssessment			Nº of p	atients	Effe	ct		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Acid suppression	no treatment	Relative (95% Cl)	Absolute (95% Cl)	Certainty	Importance
Progression	to HGD/ EAC PPI	vs. no PPI Data fror	n observational stud	ies			•					
12	non- randomised studies	not serious ^a	serious ^b	not serious	not serious	none	Not reported in the SR	132/753 (17.5%)	OR 0.47 (0.32 to 0.71)	84 fewer per 1,000 (from 112 fewer to 44 fewer)	HOO Very low ^{a,b}	CRITICAL
Progression	to HGD/EAC in Hi	gh dose PPI vs. Lov	v dose PPI. Follow u	p time of 8.9 years								
1	randomised trials	not serious	not serious	serious	serious⁴	none	84/1270 (6.6%)	100/1265 (7.9%)	RR 0.84 (0.63 to 1.11)	13 fewer per 1,000 (from 29 fewer to 9 more)		IMPORTANT
Composite o	utcome, progress	ion to HGD/ EAC ar	nd mortality High dos	se PPI vs. low dose F	PPI							
1	randomised trials	not serious	not serious	serious	serious ^e	none	139/1270 (10.9%)	174/1265 (13.8%)	HR 0.79 (0.63 to 0.99)	27 fewer per 1,000 (from 49 fewer to 1 fewer)	$\bigoplus_{Low^{c,e}} \bigcirc$	IMPORTANT
Progression	to EAC, High dose	e PPI vs. low dose F	PPI									
1	randomised trials	not serious	not serious	serious	serious®	none	40/1270 (3.1%)	41/1265 (3.2%)	HR 0.97 (0.63 to 1.50)	1 fewer per 1,000 (from 12 fewer to 16 more)		
C.diff and oth	ner enteric infectio	ons (COMPASS)							•	• • •		
1	randomised trials	not serious	not serious	not serious	Serious ^r	none	128/8791 (1.5%)	94/8807 (1.1%)	OR 1.37 (1.05 to 1.79)	4 more per 1,000 (from 1 more to 8 more)		CRITICAL
CKD progres	sion (COMPASS)											
1	randomised trials	not serious	not serious	not serious	Serious	none	184/8791 (2.1%)	158/8807 (1.8%)	OR 1.17 (0.94 to 1.45)	3 more per 1,000 (from 1 fewer to 8 more)		CRITICAL
Dementia (CO	OMPASS)											
1	randomised trials	not serious	not serious	not serious	serious ^g	none	55/8791 (0.6%)	46/8807 (0.5%)	OR 1.20 (0.81 to 1.78)	1 more per 1,000 (from 1 fewer to 4 more)	Hoderate ^g	CRITICAL
Fracture (CO	MPASS)											
1	randomised trials	not serious	not serious	not serious	not serious	none	203/8791 (2.3%)	211/8807 (2.4%)	OR 0.96 (0.79 to 1.17)	1 fewer per 1,000 (from 5 fewer to 4 more)		CRITICAL
C. difficile, p	poled data											
2	randomised trials	not serious	not serious	not serious	not serious	none	11/9077 (0.1%)	4/9077 (0.0%)	RR 2.48 (0.83 to 7.44)	1 more per 1,000 (from 0 fewer to 3 more)		CRITICAL

			Certainty a	ssessment			Nº of p	atients	Effec	:t		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Acid suppression	no treatment	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance
Fracture, poo	oled data											
2	randomised trials	not serious	not serious	not serious	not serious	none	214/9077 (2.4%)	218/9077 (2.4%)	RR 0.98 (0.81 to 1.18)	0 fewer per 1,000 (from 5 fewer to 4 more)	$\bigoplus_{High} \bigoplus_{High} \bigoplus_{High}$	CRITICAL
Pneumonia,	pooled data											
2	randomised trials	not serious	not serious	not serious	not serious	none	329/9077 (3.6%)	320/9077 (3.5%)	RR 1.03 (0.88 to 1.20)	1 more per 1,000 (from 4 fewer to 7 more)	⊕⊕⊕⊕ _{High}	CRITICAL

CI: confidence interval; HR: hazard ratio; OR: odds ratio; RR: risk ratio

Explanations

a. Although most of the studies are case control studies with concern for residual cofounding, the pooled OR in the prior SR used the multivariable adjusted estimates, thus we did not further rate down for risk of bias

b. There were studies showing significant benefit of PPIs, but there were studies that did not show any benefit. I² is 78%

c. Serious indirectness on the level of comparison the comparison group is low dose PPI we considered it for difference in acid suppression level

d. Small event number, also the CI includes some benefit to no benefit at all

e. Wide CI, includes some benefit to no clinically significant benefit

f. Low event number

g. Wide CL from no harms to some harms

Table 11. Grading of Recommendations Assessment, Development and Evaluation Evidence Profile for PICO Question 7: Role of anti-reflux surgery in the prevention of progression in patients with Barrett's esophagus

			Certainty a	ssessment			Nº of p	atients	Effec	ct		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	anti-reflux surgery	medical management	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance
Progression t	to HGD/EAC, anti	reflux surgery vs. n	nedical management									
6	non- randomized studies	Not serious ^a	not serious	not serious	Serious ^b	none	19/765 (2.5%)	443/33528 (1.3%)	RR 0.86 (0.30 to 2.41)	2 fewer per 1,000 (from 9 fewer to 19 more)	⊕⊕⊖ ILow ^{a,b}	CRITICAL
Progression t	to EAC, anti-reflu	k surgery vs. medica	al management									
6	non- randomized studies	Not Ssrious ^a	not serious	not serious	Serious ^b	none	14/765 (1.8%)	438/33528 (1.3%)	RR 1.33 (0.29 to 6.16)	4 more per 1,000 (from 9 fewer to 67 more)		CRITICAL

CI: confidence interval; RR: risk ratio

Explanations

a. There was a concern for selection bias because majority of studies lacked inclusion of consecutive patients and baseline equivalence of treatment groups however the larger studies were without concerns, so we did not rate down for risk of bias

b. Wide CI ranging from benefit with surgery to benefit with medical treatment

Table 12. Grading of Recommendations Assessment, Development and Evaluation Evidence Profile for PICO Question 8: Role of endoscopicsurveillance in patients with columnar lined esophagus <1 cm</td>

			Certainty as	ssessment					
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Impact	Certainty	Importance
Progress	sion to HGD/	EAC							
6	non- randomised studies	serious ^a	not serious	serious ^b	not serious	none	No comparative data from RCT or non-randomized studies were found that informs of the benefits or harms of surveillance vs. no surveillance in patients with CLE IM <1cm. We identified only single arm studies reporting on natural progression of CLE IM <1cm to HGD/EAC of patients who underwent follow-up EGDs. The pooled incidence was 0.1 per 100 patient-years.	⊕⊖⊖⊖ Very low ^{a,b}	CRITICAL
Complic	ations from o	diagnostic E	GD, data from la	arge cohort stu	ıdy with 387,6	47 patients			
1	non- randomised studies	not serious	not serious	not serious	not serious	none	Retrospective, observational cohort study with total of 387,647 patients that underwent EGD. - Bleeding rate was 7.9/10,000 persons - Perforations 0.4/10,000 persons - CVA, AMI, and CHF 2.8/10,000, 4.4/10,000, and 1.5/10,000 persons, respectively	⊕⊕⊖⊖ Low	CRITICAL

CI: confidence interval

Explanations

a. Suspected selection bias, given small studies and limited follow up time

b. All the studies are single arm studies on natural progression of the patients with IM in CLE <1cm and no real intervention

|--|

Pre-Procedure	Informed Consent : Discuss indications, benefits, and potential risks of the procedure in detail.
	Acid Suppressive Therapy: Optimize therapy prior to BE screening/surveillance to minimize interpretation challenges due to active esophagitis.
	Antithrombotic Management: Follow published guidelines for periprocedural management of antithrombotic agents.
Intra-Procedure	Visualization Techniques : Use a distal attachment cap, appropriate insufflation/desufflation, and mucosal cleansing agents and washing to enhance mucosal visibility.
	Landmark Identification : Accurately document the top of the squamocolumnar junction (both maximal and circumferential extent), gastroesophageal junction, and diaphragmatic hiatus.
	Systematic Inspection : Conduct multiple pull-throughs using high-definition white light endoscopy and chromoendoscopy (virtual or dye-based) including retroflexion and inspection of the distal esophagus, gastroesophageal junction and gastric cardia, spend adequate time inspecting the Barrett's mucosa to improve detection of Barrett's related neoplasia
	Standardized Reporting : Use the <i>Prague classification</i> to describe BE segment extent and length; <i>Paris classification</i> for any visible lesions; <i>Los Angeles classification</i> to describe presence of esophagitis
	Photodocumentation : Capture routine landmarks and mark suspicious lesions with annotations and descriptive details.
	Biopsy Protocol: Utilize the Seattle protocol for systematic sampling.
Post-procedure	 Provide follow-up recommendations and timing to resume antithrombotics Document pending pathology review for further guidance. Ensure surveillance intervals align with guidelines.

Table 14: Quality measures and other proposed quality metrics in Barrett's esophagus surveillance

Quality Measures	Type of Measure	Rationale
Appropriate sampling technique using the Seattle biopsy protocol	Process	Adequate sampling increases neoplasia detection compared with random biopsy sampling
Patients with non-dysplastic Barrett's esophagus patients undergo surveillance endoscopy no sooner than 3 years	Process	Reduction in overutilization of endoscopy
Proposed Quality Metrics		
Performing surveillance endoscopy using a combination of high-definition white light endoscopy (HD-WLE) with chromoendoscopy (dye-based or virtual chromoendoscopy)	Process	Combination of HD-WLE and chromoendoscopy associated with higher neoplasia rates compared to white-light endoscopy alone
Neoplasia detection rate (NDR) defined by percent detection of dysplasia on index endoscopy for screening for Barrett's esophagus	Process	Reflects the overall quality of the endoscopic examination
Barrett's inspection time that suggests inspection time of 1 minute per cm of circumferential Barrett's esophagus	Process	Reflects the quality of the endoscopic examination and may lead to increased NDR
Documenting the extent of suspected or confirmed Barrett's esophagus using the Prague criteria	Process	Consistent reporting that facilitates evidence-based decision making, improves communication and patient monitoring
Post-endoscopy esophageal cancer (PEEC) and post- endoscopy esophageal neoplasia (PEEN)	Outcome	Reflects the overall performance of endoscopy as most cases of PEEC and PEEN are due to missed lesions

Table 15: Knowledge gaps

Knowledge gaps
The role of surveillance needs to be assessed in study designs that minimize contamination and is
adequately powered to assess differences in esophageal adenocarcinoma mortality.
Future studies need to identify risk stratification tools to better guide endoscopic surveillance intervals,
risk of progression and discontinuation of surveillance.
The role of artificial intelligence in enhancing dysplasia and early cancer detection among Barrett's
esophagus patients undergoing endoscopic screening and surveillance examinations needs to be
defined (ideally in randomized controlled trials).
The role of advanced sampling techniques such as wide-area transepithelial sampling as an adjunctive
and substitutive technique to a structured biopsy protocol needs to be addressed in future randomized
controlled trials.
Validation of biomarkers needs to be performed in prospective trials (ideally in randomized controlled
trials) that assess critical endpoints of esophageal adenocarcinoma incidence and mortality.
The role of potassium-competitive acid blockers in patients with Barrett's esophagus needs to be
evaluated in future studies for the outcomes of reflux control, healing of erosive esophagitis, reduction
in neoplastic progression and outcomes in patients undergoing endoscopic eradication therapy.
Future research needs to define patients with Barrett's esophagus who are most likely to benefit from
anti-reflux procedures to prevent neoplastic progression.

SURVEILLANCE OF BARRETT'S ESOPHAGUS GUIDELINE FIGURES

Figure 1: Forest plot of incremental neoplasia detection using chromoendoscopy plus high-definition white light endoscopy compared with white light endoscopy alone

a. HGD/EAC detection (overall)

b. Detection of LGD/HGD/EAC (overall)

Figure 2: Sampling of Barrett's esophagus using a structured biopsy protocol

Figure 3: Forest plot of incremental neoplasia detection using WATS-3D plus structured biopsy protocol compared with structured biopsy protocol alone

a. Detection of HGD/EAC

	Experin	nental	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
1.1.1 Screening and/or St	urvaillanc	е					
Gross 2019	1	4203	0	4203	0.6%	3.00 [0.12, 73.62]	
Shaheen 2024	35	6829	30	6829	19.1%	1.17 [0.72, 1.90]	
Smith 2019	23	12899	13	12899	11.5%	1.77 [0.90, 3.49]	
Zhao 2022	1	109	1	109	0.8%	1.00 [0.06, 15.79]	
Subtotal (95% CI)		24040		24040	32.0%	1.35 [0.92, 1.99]	◆
Total events	60		44				
Heterogeneity: Tau ² = 0.00); Chi² = 1	.24, df =	3 (P = 0.7	74); I² = 0	1%		
Test for overall effect: Z = 1	1.52 (P = 0).13)					
4.4.0.0							
1.1.2 Surveillance on enr	icnea pop	ulation v	vith knov	wn prior	dysplasi	a/neopiasia	
Anandasabapathy 2011	9	151	8	151	6.8%	1.13 [0.45, 2.84]	
Raphael 2019	11	138	10	138	8.3%	1.10 [0.48, 2.51]	
Trindade 2023	44	8471	23	8471	18.2%	1.91 [1.16, 3.16]	
van Munster 2023	51	172	33	172	25.9%	1.55 [1.05, 2.27]	
Vennalaganti 2018	30	160	7	160	8.9%	4.29 [1.94, 9.47]	
Subtotal (95% CI)		9092		9092	68.0%	1.75 [1.18, 2.58]	◆
Total events	145		81				
Heterogeneity: Tau ² = 0.09	9; Chi ^z = 7	.60, df=	4 (P = 0.1	l 1); l² = 4	7%		
Test for overall effect: Z = 3	2.80 (P = 0	0.005)					
Total (95% CI)		33132		33132	100.0%	1.61 [1.25, 2.08]	◆
Total events	205		125				
Heterogeneity: Tau ² = 0.03	3; Chi ² = 9	.81, df=	8 (P = 0.2	28); I ^z = 1	8%		
Test for overall effect: Z = 3	3.67 (P = 0).0002)					Eavors WATS-3D + EB Eavors EB
Test for subgroup differen	ices: Chi²	= 0.84, d	f=1(P=	0.36), I ²	= 0%		

b. Detection of LGD/HGD/EAC

	WATS-3D) + FB	FB			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
1.2.1 Screening and/or St	urvaillance						
Gross 2019	49	4203	26	4203	15.1%	1.88 [1.17, 3.03]	
Shaheen 2024	49	6829	41	6829	19.7%	1.20 [0.79, 1.81]	
Zhao 2022	6	109	6	109	2.8%	1.00 [0.33, 3.00]	
Subtotal (95% CI)		11141		11141	37.6%	1.42 [1.00, 2.00]	
Total events	104		73				
Heterogeneity: Tau ² = 0.02	2; Chi² = 2.4	3, df = 2	(P = 0.30	0); I ^z = 18	8%		
Test for overall effect: Z = 1	1.97 (P = 0.)	05)					
1.2.2 Surveillance on enri	iched popu	lation w	ith know	n prior d	lvsplasia	/neoplasia	
Anandasahanathy 2011	54	151	38	151	27.8%	1 42 [1 00 2 01]	_
Raphael 2019	25	138	21	138	12.0%		
Trindade 2023	59	8471	45	8471	22.6%	1 31 [0 89, 1 93]	
Subtotal (95% CI)		8760		8760	62.4%	1.33 [1.06, 1.68]	-
Total events	138		104				_
Heterogeneity: Tau ² = 0.00); Chi ² = 0.3	1. df = 2	(P = 0.85	5); I² = 0 1	%		
Test for overall effect: Z = 2	2.43 (P = 0.1	D2)					
		40004		40004	400.00	4 20 14 44 4 0 12	
Total (95% CI)		19901		19901	100.0%	1.36 [1.14, 1.64]	-
Total events	242		177				
Heterogeneity: Tau ² = 0.00); Chi ² = 2.8	4, df = 5	(P = 0.73	3); I ² = 0'	%		
Test for overall effect: Z = 3	3.31 (P = 0.)	0009)					Favors WATS-3D + FB Favors FB
Test for subgroup differen	ces: Chi ² =	0.08, df	= 1 (P = (),78), I ²÷	= 0%		

Figure 5: Paris classification system to define any visible lesion within the Barrett's segment

Figure 6: Representative images of visible lesions in patients with Barrett's esophagus

Figure 7: Los Angeles classification system for erosive esophagitis

Los Angeles Classification

Figure 8: Forest plots for pooled outcome of progression to HGD/EAC in patients with BE with aberrant p53 expression compared to those without

a. BE with NDBE, IND and LGD

b. NDBE

c. BE with LGD

d. BE with IND

			Risk Ratio	
Author	Year		(86% C6	Weight
Viller	2020		4.93 (2.31, 10.49)	46.52
Tokuyama	2020		6.25 (1.10, 61.99)	6.54
Zallerviath	2923		4.70 (2.22, 9.98)	48.94
Overail, DL () ¹ = 0.0%	p = 0.676)	\diamond	4.99 (2.96, 6.35)	103.00
	015625	-	i i i i i i i i i i i i i i i i i i i	

Figure 9: Forest plots for pooled sensitivity and specificity of p53 assessment among patients with Barrett's esophagus undergoing surveillance endoscopy

a. NDBE – Sensitivity and specificity

b. BE with IND/LGD - Sensitivity and specificity

Study	ТР	BE	S	ensitivity	95%-CI
path = IND					
Chen 2023	3	4 —		0.75	[0.19; 0.99]
Miller 2020	9	19 –		0.47	[0.24; 0.71]
Hadjinicolaou 2020	2	4 ——		0.50	[0.07; 0.93]
Redston 2024	27	30		0.90	[0.73; 0.98]
Stachler 2020	0	1		0.00	[0.00; 0.97]
Tokuyama 2022	6	7		0.86	[0.42; 1.00]
Random effects mode	el 47	65		0.71	[0.47; 0.87]
Heterogeneity: $I^2 = 53\%$,	$\tau^2 = 0.7$	219, p = 0.06			
path = LGD & IND					
Geisler 2020	14	17		0.82	[0.57; 0.96]
oath = LGD			_		
Hadjinicolaou 2020	10	14	· · · · · · · · · · · · · · · · · · ·	0.71	[0.42; 0.92]
Redston 2023	97	103		0.94	[0.88; 0.98]
Stachler 2019	2	2 —		1.00	[0.16; 1.00]
Fokuyama 2021	3	3		1.00	[0.29; 1.00]
Olphen 2016	47	67	- • •	0.70	[0.58; 0.81]
Random effects mode	el 159	189	\sim	0.85	[0.68; 0.94]
Heterogeneity: $I^2 = 74\%$,	$\tau^2 = 0.6$	6714, <i>p</i> < 0.01			
Random effects mode Heterogeneity: $l^2 = 62\%$.	$\tau^2 = 0.6$	271 5782. p < 0.01		0.80	[0.67; 0.88]
Test for subaroup differen	nces: γ^2	= 1.62. df = 2 (2,€(4,44)0,6 0,8 1		
	12			10 100 100 T I	

Study	TN I	lo BE	Sp	ecificity	95%-CI
path = IND			1		
Chen 2023	118	145	÷	0.81	[0.74; 0.87]
Viller 2020	99	104		0.95	[0.89; 0.98]
-ladjinicolaou 2020	2	6		0.33	[0.04; 0.78]
Redston 2024	22	26		0.85	[0.65; 0.96]
Stachler 2020	1	2		0.50	[0.01; 0.99]
Tokuyama 2022	21	31		0.68	[0.49; 0.83]
Random effects mod	lel 263	314		0.79	[0.59; 0.90]
deterogeneity: $I^2 = 77\%$	$, \tau^2 = 0.92$	228, p <	0.01		
oath = LGD & IND					
Geisler 2020	40	59		0.68	[0.54; 0.79]
oath = LGD					
Hadjinicolaou 2020	5	5		1.00	[0.48; 1.00]
Redston 2023	24	44		0.55	[0.39; 0.70]
Stachler 2019	5	5		1.00	[0.48; 1.00]
Tokuyama 2021	2	5		0.40	[0.05; 0.85]
Olphen 2016	189	274		0.69	[0.63; 0.74]
Random effects mod	lel 225	333	\diamond	0.68	[0.62; 0.72]
Heterogeneity: I ² = 19%	$, \tau^2 = 0, p$	= 0.29			
Random effects mod	lel_528	706		0.75	[0.62; 0.85]
Heterogeneity: $I^2 = 74\%$	$\tau^2 = 0.76$	624, p <	0.01		
Test for subgroup differe	ences: χ_2^2	= 1.39, o	$if = 20(p^2 = 0.05.04) 0.6 0.8 1$		
	Bas	ed on b	ivariate model: 0.73 (95% CI: 0.62	- 0.82)	

Figure 10: Forest plots for progression to high-grade dysplasia or esophageal adenocarcinoma in patients with columnar lined esophagus <1 cm with intestinal metaplasia

